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To ensure the safety of food products of animal origin, screening for the administration of

prohibited growth promoters in production animals is a priority for public authorities. In

this regard, metabolomics is a preferred strategy for the discovery of new effect

biomarkers. Numerous studies have demonstrated the potential of these approaches as

proof of concept, but they only addressed a single class of compounds and had limited

metabolome coverage. Thus, the present study aimed to establish a comprehensive

classification model for urine samples from cattle treated with five different growth

promoters, based on a more exhaustive evaluation of the metabolome.

In conclusion, the combination of (1) six different experiments and (2) four LC-HRMS

analyses, never reported previously to our knowledge, illustrates the complementarity of

LC-HRMS analyses in terms of metabolic coverage. Their multi-block integration enabled

the implementation of a comprehensive classification model capable of predicting the

administration of growth promoters.
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1. Experimental design
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Peak picking
• NA < 20 % 
• Fold Change > 2 (sample/blank)
• IQR (InterQuartile Range) 

filtering

Signal normalization
• LOESS
• Log 10
• Pareto

Sample normalization
• PQN (Probabilistic Quotient 

Normalization) based on QC 
samples

• Time 0 centered

(Narduzzi et al. 2020)

4. Data processing

Level 5: m/z 
Level 4: Molecular formula (adduct, isotope)
Level 3: Candidate based on in silico analysis (SIRIUS)
Level 2: MS and MS/MS match with spectral database
Level 1: Standard comparison

(Schymansky et al. 2014)

6. Annotation
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INTRODUCTION

The quality of the data was verified using PCA.

Although no instrumental variability was

observed (as indicated by grouped QC samples),

specific phenotypes for each experiment were

highlighted despite PQN normalization and

could masking the effects of growth promoter

administration. To address the significant inter-

individual variability and standardize the data

obtained from each experiment, T0

normalization was performed using samples

collected before administration. After

normalization, the data appeared homogeneous

across different individuals.

1. Data processing

2. Classification model and multiblock integration

Datasets weight in multi-block analysis

Following metabolomics analyses, four datasets were obtained: RPLC_POS, RPLC_NEG, HILIC_POS, HILIC_NEG.

Multivariate analyses highlighted differences in the metabolome between control samples and those collected after

administration of anabolic agents regardless of the compound. Furthermore, considering the model performance

(Q2Y), multi-block integration improved the classification and prediction of samples compared to individual models. In

this regard, multi-block analyses also demonstrated that all four datasets were important in predicting treated samples.

Combining both univariate and multivariate analysis

with compound annotation allowed potential

biomarkers discovery. Interestingly, known

compounds discovered in previous metabolomics

studies on common experiments also appeared

significantly different when including a wide variety

of anabolic agents. This is notably the case for

creatine (Dervilly et al. 2018) and guanidinobutyric

acid, a metabolite derived from the arginine and

proline metabolic pathway (Stojilkovic et al., 2019).

Metabolite annotation also demonstrated the

complementarity of the four datasets, with only two

metabolites in common.

3. Biomarkers discovery

HRMS analysis - Q-Exactive

RPLC analysis

Hypersil Gold 

Flow Rate : 0,4 mL/min
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MS acquisition

• Full scan @ 
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HILIC analysis

BEH amide 

Flow Rate : 0,4 mL/min

A : H2O + 20 mM ammonium 
formate and 0.1% formic acid 
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MS/MS acquistion
• Iterative DDA 
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annotation

3. Metabolomics analysis

Univariate analysis
• Wilcoxon test with

FDR (False Discovery 
Rate) correction

• Fold change

Multivariate analysis
• PCA, C-OPLS
• Multiblock integration
• UVE (Uninformative Variation 

Elimination) 
• Model validation: cross validation 

and permutation test

(Boccard et al. 2013)

5. Statistical analysis
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